mRTVP-1, a novel p53 target gene with proapoptotic activities.
نویسندگان
چکیده
We identified a novel mouse gene, mRTVP-1, as a p53 target gene using differential display PCR and extensive promoter analysis. The mRTVP-1 protein has 255 amino acids and differs from the human RTVP-1 (hRTVP-1) protein by two short in-frame deletions of two and nine amino acids. RTVP-1 mRNA was induced in multiple cancer cell lines by adenovirus-mediated delivery of p53 and by gamma irradiation or doxorubicin both in the presence and in the absence of endogenous p53. Analysis of RTVP-1 expression in nontransformed and transformed cells further supported p53-independent gene regulation. Using luciferase reporter and electrophoretic mobility shift assays we identified a p53 binding site within intron 1 of the mRTVP-1 gene. Overexpression of mRTVP-1 or hRTVP-1 induced apoptosis in multiple cancer cell lines including prostate cancer cell lines 148-1PA, 178-2BMA, PC-3, TSU-Pr1, and LNCaP, a human lung cancer cell line, H1299, and two isogenic human colon cancer cell lines, HCT116 p53(+/+) and HCT116 p53(-/-), as demonstrated by annexin V positivity, phase-contrast microscopy, and in selected cases 4',6'-diamidino-2-phenylindole staining and DNA fragmentation. Deletion of the signal peptide from the N terminus of RTVP-1 reduced its apoptotic activities, suggesting that a secreted and soluble form of RTVP-1 may mediate, in part, its proapoptotic activities.
منابع مشابه
Glioma pathogenesis-related protein 1 exerts tumor suppressor activities through proapoptotic reactive oxygen species-c-Jun-NH2 kinase signaling.
Glioma pathogenesis-related protein 1 (GLIPR1), a novel p53 target gene, is down-regulated by methylation in prostate cancer and has p53-dependent and -independent proapoptotic activities in tumor cells. These properties suggest an important tumor suppressor role for GLIPR1, yet direct genetic evidence of a tumor suppressor function for GLIPR1 is lacking and the molecular mechanism(s), through ...
متن کاملp73 is effective in p53-null pancreatic cancer cells resistant to wild-type TP53 gene replacement.
Novel therapies such as gene therapy are needed for the treatment of pancreatic carcinomas. Here we show that adenovirus-mediated p73 overexpression results in a strong induction of apoptosis, whereas the effect of p53 varies between different cell lines. In particular, p53-negative AsPC-1 cells are resistant to p53-mediated apoptosis. In these cells, only ectopically expressed p73 activates th...
متن کاملCell Death and Survival Identification of TRIML2, a Novel p53 Target, that Enhances p53 SUMOylation and Regulates the Transactivation of Proapoptotic Genes
The tumor-suppressor protein p53, encoded by TP53, inhibits tumorigenesis by inducing cell-cycle arrest, senescence, and apoptosis. Several genetic polymorphisms exist in TP53, including a proline to arginine variant at amino acid 72 (P72 and R72, respectively); this polymorphism alters p53 function. In general, the P72 variant shows increased ability to induce cell-cycle arrest, whereas the R7...
متن کاملRetraction: High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2.
High-mobility group A1 (HMGA1) overexpression and gene rearrangement are frequent events in human cancer, but the molecular basis of HMGA1 oncogenic activity remains unclear. Here we describe a mechanism through which HMGA1 inhibits p53-mediated apoptosis by counteracting the p53 proapoptotic activator homeodomain-interacting protein kinase 2 (HIPK2). We found that HMGA1 overexpression promoted...
متن کاملBrn-3a transcription factor blocks p53-mediated activation of proapoptotic target genes Noxa and Bax in vitro and in vivo to determine cell fate.
The Brn-3a POU transcription factor is associated with survival and the differentiation of sensory neuronal cells during development. Brn-3a mediates its effects either by the direct regulation of target genes or indirectly upon interaction with proteins such as p53. Brn-3a differentially regulates p53-mediated gene expression and modifies its effect on cell fate. Here we show that, like Bax, B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2002